La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.
Riesgos para la seguridad y la integridad
La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:
- Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
- Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
- Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.
Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.
Privacidad, vigilancia y protección de los derechos humanos
La IA genera desafíos para los derechos civiles y las libertades públicas:
- Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
- Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
- Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.
Caso: la proliferación de campañas de desinformación impulsadas por la generación automática de contenido ha desencadenado discusiones en foros electorales y ha motivado propuestas que buscan imponer obligaciones de transparencia respecto al empleo de sistemas generativos dentro de las campañas.
Equidad, no discriminación y inclusión
Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:
- Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
- Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.
Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.
Transparencia, explicabilidad y trazabilidad
Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:
- Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
- Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
- Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.
la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo
Responsabilidad jurídica y cumplimiento
La asignación de responsabilidades ante daños generados por IA es un tema central:
- Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
- Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
- Reparación a las víctimas: mecanismos rápidos para compensación y remediación.
Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.
Derechos de propiedad intelectual y disponibilidad de datos
El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:
- Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
- Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.
Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.
Economía, empleo y competencia
La IA es capaz de remodelar mercados, empleos y la organización empresarial:
- Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
- Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
- Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación. Sustentabilidad del entorno
- Huella de carbono: entrenamiento de modelos muy grandes puede consumir energía significativa; indicadores y límites son discutidos.
- Optimización y transparencia energética: etiquetas de eficiencia, reporte de consumo y migración a infraestructuras con energía renovable.
- Marco de normalización: elaboración de estándares técnicos internacionales que abordan la solidez, las interfaces y los formatos de datos.
- Interoperabilidad: asegurar que distintos sistemas puedan colaborar manteniendo niveles adecuados de seguridad y privacidad.
- Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y diversos foros regionales intervienen en la coordinación y armonización regulatoria.
- Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
- Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
- Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.
- Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
- Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
- Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.
- Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
- Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.
- Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
- Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.
- Principios de la OCDE: directrices destinadas a promover el uso responsable y fiable de la IA.
- Recomendación de la UNESCO: marco ético concebido para orientar la formulación de políticas nacionales.
- Propuestas regionales: la Unión Europea desarrolla un reglamento basado en la gestión del riesgo y en exigencias de transparencia y seguridad.
El impacto energético y material de entrenar y operar modelos es objeto de regulación y buenas prácticas:
Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.
Regulaciones técnicas, estándares y procesos de interoperabilidad
La adopción de estándares promueve mayor seguridad, confianza y dinamiza el comercio:
Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.
Procesos de verificación, observancia y coordinación multilateral
Sin mecanismos de verificación creíbles, las reglas quedan en papel:
Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.
Mecanismos regulatorios y herramientas prácticas
Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:
Participación ciudadana y gobernanza democrática
La legitimidad de las reglas depende de la inclusión:
Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.
Sobresalientes tensiones geopolíticas
La carrera por la primacía en IA implica riesgos de fragmentación:
Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.
Acciones y referencias multilaterales
Existen diversas iniciativas que actúan como punto de referencia:
Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.
La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

